3.5.16 \(\int \frac {(d+e x)^{3/2}}{(f+g x)^{3/2} (a+c x^2)} \, dx\)

Optimal. Leaf size=625 \[ \frac {2 \sqrt {d+e x} (e f-d g)}{\sqrt {f+g x} \left (a g^2+c f^2\right )}-\frac {2 \sqrt {e} (e f-d g) \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {d+e x}}{\sqrt {e} \sqrt {f+g x}}\right )}{\sqrt {g} \left (a g^2+c f^2\right )}-\frac {\sqrt {e} \left (-\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {d+e x}}{\sqrt {e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {g} \left (a g^2+c f^2\right )}+\frac {\sqrt {e} \left (\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {d+e x}}{\sqrt {e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {g} \left (a g^2+c f^2\right )}+\frac {\sqrt {\sqrt {c} d-\sqrt {-a} e} \left (-\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {c} f-\sqrt {-a} g}}{\sqrt {f+g x} \sqrt {\sqrt {c} d-\sqrt {-a} e}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\sqrt {c} f-\sqrt {-a} g} \left (a g^2+c f^2\right )}-\frac {\sqrt {\sqrt {-a} e+\sqrt {c} d} \left (\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {-a} g+\sqrt {c} f}}{\sqrt {f+g x} \sqrt {\sqrt {-a} e+\sqrt {c} d}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\sqrt {-a} g+\sqrt {c} f} \left (a g^2+c f^2\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 2.53, antiderivative size = 625, normalized size of antiderivative = 1.00, number of steps used = 19, number of rules used = 9, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {908, 47, 63, 217, 206, 6725, 105, 93, 208} \begin {gather*} \frac {2 \sqrt {d+e x} (e f-d g)}{\sqrt {f+g x} \left (a g^2+c f^2\right )}-\frac {2 \sqrt {e} (e f-d g) \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {d+e x}}{\sqrt {e} \sqrt {f+g x}}\right )}{\sqrt {g} \left (a g^2+c f^2\right )}-\frac {\sqrt {e} \left (-\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {d+e x}}{\sqrt {e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {g} \left (a g^2+c f^2\right )}+\frac {\sqrt {e} \left (\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {d+e x}}{\sqrt {e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {g} \left (a g^2+c f^2\right )}+\frac {\sqrt {\sqrt {c} d-\sqrt {-a} e} \left (-\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {c} f-\sqrt {-a} g}}{\sqrt {f+g x} \sqrt {\sqrt {c} d-\sqrt {-a} e}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\sqrt {c} f-\sqrt {-a} g} \left (a g^2+c f^2\right )}-\frac {\sqrt {\sqrt {-a} e+\sqrt {c} d} \left (\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {-a} g+\sqrt {c} f}}{\sqrt {f+g x} \sqrt {\sqrt {-a} e+\sqrt {c} d}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\sqrt {-a} g+\sqrt {c} f} \left (a g^2+c f^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(3/2)/((f + g*x)^(3/2)*(a + c*x^2)),x]

[Out]

(2*(e*f - d*g)*Sqrt[d + e*x])/((c*f^2 + a*g^2)*Sqrt[f + g*x]) - (2*Sqrt[e]*(e*f - d*g)*ArcTanh[(Sqrt[g]*Sqrt[d
 + e*x])/(Sqrt[e]*Sqrt[f + g*x])])/(Sqrt[g]*(c*f^2 + a*g^2)) - (Sqrt[e]*(c*d*f + a*e*g - Sqrt[-a]*Sqrt[c]*(e*f
 - d*g))*ArcTanh[(Sqrt[g]*Sqrt[d + e*x])/(Sqrt[e]*Sqrt[f + g*x])])/(Sqrt[-a]*Sqrt[c]*Sqrt[g]*(c*f^2 + a*g^2))
+ (Sqrt[e]*(c*d*f + a*e*g + Sqrt[-a]*Sqrt[c]*(e*f - d*g))*ArcTanh[(Sqrt[g]*Sqrt[d + e*x])/(Sqrt[e]*Sqrt[f + g*
x])])/(Sqrt[-a]*Sqrt[c]*Sqrt[g]*(c*f^2 + a*g^2)) + (Sqrt[Sqrt[c]*d - Sqrt[-a]*e]*(c*d*f + a*e*g - Sqrt[-a]*Sqr
t[c]*(e*f - d*g))*ArcTanh[(Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d - Sqrt[-a]*e]*Sqrt[f +
g*x])])/(Sqrt[-a]*Sqrt[c]*Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*(c*f^2 + a*g^2)) - (Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*(c*d*f
 + a*e*g + Sqrt[-a]*Sqrt[c]*(e*f - d*g))*ArcTanh[(Sqrt[Sqrt[c]*f + Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d
+ Sqrt[-a]*e]*Sqrt[f + g*x])])/(Sqrt[-a]*Sqrt[c]*Sqrt[Sqrt[c]*f + Sqrt[-a]*g]*(c*f^2 + a*g^2))

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 105

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Dist[b/f, Int[(a
+ b*x)^(m - 1)*(c + d*x)^n, x], x] - Dist[(b*e - a*f)/f, Int[((a + b*x)^(m - 1)*(c + d*x)^n)/(e + f*x), x], x]
 /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[Simplify[m + n + 1], 0] && (GtQ[m, 0] || ( !RationalQ[m] && (Su
mSimplerQ[m, -1] ||  !SumSimplerQ[n, -1])))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 908

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> -Dist[(g*(e*f -
d*g))/(c*f^2 + a*g^2), Int[(d + e*x)^(m - 1)*(f + g*x)^n, x], x] + Dist[1/(c*f^2 + a*g^2), Int[(Simp[c*d*f + a
*e*g + c*(e*f - d*g)*x, x]*(d + e*x)^(m - 1)*(f + g*x)^(n + 1))/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g
}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[m, 0] && LtQ[n, -1]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^{3/2}}{(f+g x)^{3/2} \left (a+c x^2\right )} \, dx &=\frac {\int \frac {\sqrt {d+e x} (c d f+a e g+c (e f-d g) x)}{\sqrt {f+g x} \left (a+c x^2\right )} \, dx}{c f^2+a g^2}-\frac {(g (e f-d g)) \int \frac {\sqrt {d+e x}}{(f+g x)^{3/2}} \, dx}{c f^2+a g^2}\\ &=\frac {2 (e f-d g) \sqrt {d+e x}}{\left (c f^2+a g^2\right ) \sqrt {f+g x}}+\frac {\int \left (\frac {\left (-a \sqrt {c} (e f-d g)+\sqrt {-a} (c d f+a e g)\right ) \sqrt {d+e x}}{2 a \left (\sqrt {-a}-\sqrt {c} x\right ) \sqrt {f+g x}}+\frac {\left (a \sqrt {c} (e f-d g)+\sqrt {-a} (c d f+a e g)\right ) \sqrt {d+e x}}{2 a \left (\sqrt {-a}+\sqrt {c} x\right ) \sqrt {f+g x}}\right ) \, dx}{c f^2+a g^2}-\frac {(e (e f-d g)) \int \frac {1}{\sqrt {d+e x} \sqrt {f+g x}} \, dx}{c f^2+a g^2}\\ &=\frac {2 (e f-d g) \sqrt {d+e x}}{\left (c f^2+a g^2\right ) \sqrt {f+g x}}-\frac {(2 (e f-d g)) \operatorname {Subst}\left (\int \frac {1}{\sqrt {f-\frac {d g}{e}+\frac {g x^2}{e}}} \, dx,x,\sqrt {d+e x}\right )}{c f^2+a g^2}-\frac {\left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \int \frac {\sqrt {d+e x}}{\left (\sqrt {-a}+\sqrt {c} x\right ) \sqrt {f+g x}} \, dx}{2 \sqrt {-a} \left (c f^2+a g^2\right )}-\frac {\left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \int \frac {\sqrt {d+e x}}{\left (\sqrt {-a}-\sqrt {c} x\right ) \sqrt {f+g x}} \, dx}{2 \sqrt {-a} \left (c f^2+a g^2\right )}\\ &=\frac {2 (e f-d g) \sqrt {d+e x}}{\left (c f^2+a g^2\right ) \sqrt {f+g x}}-\frac {(2 (e f-d g)) \operatorname {Subst}\left (\int \frac {1}{1-\frac {g x^2}{e}} \, dx,x,\frac {\sqrt {d+e x}}{\sqrt {f+g x}}\right )}{c f^2+a g^2}-\frac {\left (e \left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right )\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {f+g x}} \, dx}{2 \sqrt {-a} \sqrt {c} \left (c f^2+a g^2\right )}-\frac {\left (\left (d-\frac {\sqrt {-a} e}{\sqrt {c}}\right ) \left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right )\right ) \int \frac {1}{\left (\sqrt {-a}+\sqrt {c} x\right ) \sqrt {d+e x} \sqrt {f+g x}} \, dx}{2 \sqrt {-a} \left (c f^2+a g^2\right )}+\frac {\left (e \left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right )\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {f+g x}} \, dx}{2 \sqrt {-a} \sqrt {c} \left (c f^2+a g^2\right )}-\frac {\left (\left (d+\frac {\sqrt {-a} e}{\sqrt {c}}\right ) \left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right )\right ) \int \frac {1}{\left (\sqrt {-a}-\sqrt {c} x\right ) \sqrt {d+e x} \sqrt {f+g x}} \, dx}{2 \sqrt {-a} \left (c f^2+a g^2\right )}\\ &=\frac {2 (e f-d g) \sqrt {d+e x}}{\left (c f^2+a g^2\right ) \sqrt {f+g x}}-\frac {2 \sqrt {e} (e f-d g) \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {d+e x}}{\sqrt {e} \sqrt {f+g x}}\right )}{\sqrt {g} \left (c f^2+a g^2\right )}-\frac {\left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {f-\frac {d g}{e}+\frac {g x^2}{e}}} \, dx,x,\sqrt {d+e x}\right )}{\sqrt {-a} \sqrt {c} \left (c f^2+a g^2\right )}-\frac {\left (\left (d-\frac {\sqrt {-a} e}{\sqrt {c}}\right ) \left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-\sqrt {c} d+\sqrt {-a} e-\left (-\sqrt {c} f+\sqrt {-a} g\right ) x^2} \, dx,x,\frac {\sqrt {d+e x}}{\sqrt {f+g x}}\right )}{\sqrt {-a} \left (c f^2+a g^2\right )}+\frac {\left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {f-\frac {d g}{e}+\frac {g x^2}{e}}} \, dx,x,\sqrt {d+e x}\right )}{\sqrt {-a} \sqrt {c} \left (c f^2+a g^2\right )}-\frac {\left (\left (d+\frac {\sqrt {-a} e}{\sqrt {c}}\right ) \left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {c} d+\sqrt {-a} e-\left (\sqrt {c} f+\sqrt {-a} g\right ) x^2} \, dx,x,\frac {\sqrt {d+e x}}{\sqrt {f+g x}}\right )}{\sqrt {-a} \left (c f^2+a g^2\right )}\\ &=\frac {2 (e f-d g) \sqrt {d+e x}}{\left (c f^2+a g^2\right ) \sqrt {f+g x}}-\frac {2 \sqrt {e} (e f-d g) \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {d+e x}}{\sqrt {e} \sqrt {f+g x}}\right )}{\sqrt {g} \left (c f^2+a g^2\right )}+\frac {\sqrt {\sqrt {c} d-\sqrt {-a} e} \left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f-\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\sqrt {c} f-\sqrt {-a} g} \left (c f^2+a g^2\right )}-\frac {\sqrt {\sqrt {c} d+\sqrt {-a} e} \left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f+\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d+\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\sqrt {c} f+\sqrt {-a} g} \left (c f^2+a g^2\right )}-\frac {\left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \operatorname {Subst}\left (\int \frac {1}{1-\frac {g x^2}{e}} \, dx,x,\frac {\sqrt {d+e x}}{\sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} \left (c f^2+a g^2\right )}+\frac {\left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \operatorname {Subst}\left (\int \frac {1}{1-\frac {g x^2}{e}} \, dx,x,\frac {\sqrt {d+e x}}{\sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} \left (c f^2+a g^2\right )}\\ &=\frac {2 (e f-d g) \sqrt {d+e x}}{\left (c f^2+a g^2\right ) \sqrt {f+g x}}-\frac {2 \sqrt {e} (e f-d g) \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {d+e x}}{\sqrt {e} \sqrt {f+g x}}\right )}{\sqrt {g} \left (c f^2+a g^2\right )}-\frac {\sqrt {e} \left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {d+e x}}{\sqrt {e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {g} \left (c f^2+a g^2\right )}+\frac {\sqrt {e} \left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {d+e x}}{\sqrt {e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {g} \left (c f^2+a g^2\right )}+\frac {\sqrt {\sqrt {c} d-\sqrt {-a} e} \left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f-\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\sqrt {c} f-\sqrt {-a} g} \left (c f^2+a g^2\right )}-\frac {\sqrt {\sqrt {c} d+\sqrt {-a} e} \left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f+\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d+\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\sqrt {c} f+\sqrt {-a} g} \left (c f^2+a g^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.73, size = 336, normalized size = 0.54 \begin {gather*} -\left (\left (\frac {d}{\sqrt {-a}}-\frac {e}{\sqrt {c}}\right ) \left (\frac {\sqrt {d+e x}}{\sqrt {f+g x} \left (\sqrt {c} f-\sqrt {-a} g\right )}+\frac {\sqrt {\sqrt {-a} e-\sqrt {c} d} \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {-a} g-\sqrt {c} f}}{\sqrt {f+g x} \sqrt {\sqrt {-a} e-\sqrt {c} d}}\right )}{\left (\sqrt {-a} g-\sqrt {c} f\right )^{3/2}}\right )\right )-\left (\frac {a d}{(-a)^{3/2}}-\frac {e}{\sqrt {c}}\right ) \left (\frac {\sqrt {d+e x}}{\sqrt {f+g x} \left (\sqrt {-a} g+\sqrt {c} f\right )}-\frac {\sqrt {\sqrt {-a} e+\sqrt {c} d} \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {-a} g+\sqrt {c} f}}{\sqrt {f+g x} \sqrt {\sqrt {-a} e+\sqrt {c} d}}\right )}{\left (\sqrt {-a} g+\sqrt {c} f\right )^{3/2}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(3/2)/((f + g*x)^(3/2)*(a + c*x^2)),x]

[Out]

-((d/Sqrt[-a] - e/Sqrt[c])*(Sqrt[d + e*x]/((Sqrt[c]*f - Sqrt[-a]*g)*Sqrt[f + g*x]) + (Sqrt[-(Sqrt[c]*d) + Sqrt
[-a]*e]*ArcTanh[(Sqrt[-(Sqrt[c]*f) + Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[-(Sqrt[c]*d) + Sqrt[-a]*e]*Sqrt[f + g*x]
)])/(-(Sqrt[c]*f) + Sqrt[-a]*g)^(3/2))) - ((a*d)/(-a)^(3/2) - e/Sqrt[c])*(Sqrt[d + e*x]/((Sqrt[c]*f + Sqrt[-a]
*g)*Sqrt[f + g*x]) - (Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*ArcTanh[(Sqrt[Sqrt[c]*f + Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[
Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[f + g*x])])/(Sqrt[c]*f + Sqrt[-a]*g)^(3/2))

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 92.44, size = 1541, normalized size = 2.47

result too large to display

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(d + e*x)^(3/2)/((f + g*x)^(3/2)*(a + c*x^2)),x]

[Out]

(2*(e*f - d*g)*Sqrt[d - (e*f)/g + (e*(f + g*x))/g])/((c*f^2 + a*g^2)*Sqrt[f + g*x]) + ((2*c*d*e^3*f^3*Sqrt[e/g
]*g - 5*c*d^2*e^2*f^2*Sqrt[e/g]*g^2 + a*e^4*f^2*Sqrt[e/g]*g^2 + 4*c*d^3*e*f*Sqrt[e/g]*g^3 - 2*a*d*e^3*f*Sqrt[e
/g]*g^3 - c*d^4*Sqrt[e/g]*g^4 + a*d^2*e^2*Sqrt[e/g]*g^4)*RootSum[c*e^4*f^4 - 4*c*d*e^3*f^3*g + 6*c*d^2*e^2*f^2
*g^2 - 4*c*d^3*e*f*g^3 + c*d^4*g^4 - 4*c*e^3*f^3*g*#1^2 + 4*c*d*e^2*f^2*g^2*#1^2 + 4*c*d^2*e*f*g^3*#1^2 - 4*c*
d^3*g^4*#1^2 + 6*c*e^2*f^2*g^2*#1^4 + 4*c*d*e*f*g^3*#1^4 + 6*c*d^2*g^4*#1^4 + 16*a*e^2*g^4*#1^4 - 4*c*e*f*g^3*
#1^6 - 4*c*d*g^4*#1^6 + c*g^4*#1^8 & , Log[-(Sqrt[e/g]*Sqrt[f + g*x]) + Sqrt[d - (e*f)/g + (e*(f + g*x))/g] -
#1]/(c*e^3*f^3 - c*d*e^2*f^2*g - c*d^2*e*f*g^2 + c*d^3*g^3 - 3*c*e^2*f^2*g*#1^2 - 2*c*d*e*f*g^2*#1^2 - 3*c*d^2
*g^3*#1^2 - 8*a*e^2*g^3*#1^2 + 3*c*e*f*g^2*#1^4 + 3*c*d*g^3*#1^4 - c*g^3*#1^6) & ])/(c*f^2 + a*g^2) + (2*(2*c*
d*e^2*f^2*Sqrt[e/g]*g^2 - c*d^2*e*f*Sqrt[e/g]*g^3 + 3*a*e^3*f*Sqrt[e/g]*g^3 - c*d^3*Sqrt[e/g]*g^4 - 3*a*d*e^2*
Sqrt[e/g]*g^4)*RootSum[c*e^4*f^4 - 4*c*d*e^3*f^3*g + 6*c*d^2*e^2*f^2*g^2 - 4*c*d^3*e*f*g^3 + c*d^4*g^4 - 4*c*e
^3*f^3*g*#1^2 + 4*c*d*e^2*f^2*g^2*#1^2 + 4*c*d^2*e*f*g^3*#1^2 - 4*c*d^3*g^4*#1^2 + 6*c*e^2*f^2*g^2*#1^4 + 4*c*
d*e*f*g^3*#1^4 + 6*c*d^2*g^4*#1^4 + 16*a*e^2*g^4*#1^4 - 4*c*e*f*g^3*#1^6 - 4*c*d*g^4*#1^6 + c*g^4*#1^8 & , (Lo
g[-(Sqrt[e/g]*Sqrt[f + g*x]) + Sqrt[d - (e*f)/g + (e*(f + g*x))/g] - #1]*#1^2)/(-(c*e^3*f^3) + c*d*e^2*f^2*g +
 c*d^2*e*f*g^2 - c*d^3*g^3 + 3*c*e^2*f^2*g*#1^2 + 2*c*d*e*f*g^2*#1^2 + 3*c*d^2*g^3*#1^2 + 8*a*e^2*g^3*#1^2 - 3
*c*e*f*g^2*#1^4 - 3*c*d*g^3*#1^4 + c*g^3*#1^6) & ])/(c*f^2 + a*g^2) + ((-2*c*d*e*f*Sqrt[e/g]*g^3 + c*d^2*Sqrt[
e/g]*g^4 - a*e^2*Sqrt[e/g]*g^4)*RootSum[c*e^4*f^4 - 4*c*d*e^3*f^3*g + 6*c*d^2*e^2*f^2*g^2 - 4*c*d^3*e*f*g^3 +
c*d^4*g^4 - 4*c*e^3*f^3*g*#1^2 + 4*c*d*e^2*f^2*g^2*#1^2 + 4*c*d^2*e*f*g^3*#1^2 - 4*c*d^3*g^4*#1^2 + 6*c*e^2*f^
2*g^2*#1^4 + 4*c*d*e*f*g^3*#1^4 + 6*c*d^2*g^4*#1^4 + 16*a*e^2*g^4*#1^4 - 4*c*e*f*g^3*#1^6 - 4*c*d*g^4*#1^6 + c
*g^4*#1^8 & , (Log[-(Sqrt[e/g]*Sqrt[f + g*x]) + Sqrt[d - (e*f)/g + (e*(f + g*x))/g] - #1]*#1^4)/(-(c*e^3*f^3)
+ c*d*e^2*f^2*g + c*d^2*e*f*g^2 - c*d^3*g^3 + 3*c*e^2*f^2*g*#1^2 + 2*c*d*e*f*g^2*#1^2 + 3*c*d^2*g^3*#1^2 + 8*a
*e^2*g^3*#1^2 - 3*c*e*f*g^2*#1^4 - 3*c*d*g^3*#1^4 + c*g^3*#1^6) & ])/(c*f^2 + a*g^2)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^(3/2)/(c*x^2+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^(3/2)/(c*x^2+a),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.07, size = 8264, normalized size = 13.22 \begin {gather*} \text {output too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)/(g*x+f)^(3/2)/(c*x^2+a),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (e x + d\right )}^{\frac {3}{2}}}{{\left (c x^{2} + a\right )} {\left (g x + f\right )}^{\frac {3}{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^(3/2)/(c*x^2+a),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(3/2)/((c*x^2 + a)*(g*x + f)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^{3/2}}{{\left (f+g\,x\right )}^{3/2}\,\left (c\,x^2+a\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(3/2)/((f + g*x)^(3/2)*(a + c*x^2)),x)

[Out]

int((d + e*x)^(3/2)/((f + g*x)^(3/2)*(a + c*x^2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)/(g*x+f)**(3/2)/(c*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________